149 research outputs found

    Performance Enhancements for Asynchronous Random Access Protocols over Satellite

    Get PDF
    In this paper, a novel enhancement of the well known ALOHA random access mechanism is presented which largely extends the achievable throughput compared to traditional ALOHA and provides significantly lower packet loss rates. The novel mechanism, called Contention Resolution - ALOHA (CRA), is based on transmitting multiple replicas of a packet in an unslotted ALOHA system and applying interference cancellation techniques. In this paper the methodology for this new random access technique is presented, also w.r.t. existing Interference Cancellation (IC) techniques. Moreover numerical results for performance comparison with state of the art random access mechanisms, such as Contention Resolution Diversity Slotted ALOHA (CRDSA) are provided. Finally the benefit of taking strong forward error correcting codes for the performance of CRA is shown

    On the Stability of Contention Resolution Diversity Slotted ALOHA

    Get PDF
    In this paper a Time Division Multiple Access (TDMA) based Random Access (RA) channel with Successive Interference Cancellation (SIC) is considered for a finite user population and reliable retransmission mechanism on the basis of Contention Resolution Diversity Slotted ALOHA (CRDSA). A general mathematical model based on Markov Chains is derived which makes it possible to predict the stability regions of SIC-RA channels, the expected delays in equilibrium and the selection of parameters for a stable channel configuration. Furthermore the model enables the estimation of the average time before reaching instability. The presented model is verified against simulations and numerical results are provided for comparison of the stability of CRDSA versus the stability of traditional Slotted ALOHA (SA). The presented results show that CRDSA has not only a high gain over SA in terms of throughput but also in its stability.Comment: 10 pages, 12 figures This paper is submitted to the IEEE Transactions on Communications for possible publication. The IEEE copyright notice applie

    Optimum Header Positioning in Successive Interference Cancellation (SIC) based Aloha

    Full text link
    Random Access MAC protocols are simple and effective when the nature of the traffic is unpredictable and sporadic. In the following paper, investigations on the new Enhanced Contention Resolution ALOHA (ECRA) are presented, where some new aspects of the protocol are investigated. Mathematical derivation and numerical evaluation of the symbol interference probability after SIC are here provided. Results of the optimum header positioning which is found to be in the beginning and in the end of the packets, are exploited for the evaluation of ECRA throughput and Packet Error Rate (PER) under imperfect knowledge of packets positions. Remarkable gains in the maximum throughput are observed for ECRA w.r.t. Contention Resolution ALOHA (CRA) under this assumption.Comment: Accepted for publication in the IEEE International Conference on Communications (ICC) 201

    Quality of Service Management and Interoperability

    Get PDF
    Information technology: general issue

    Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    Get PDF
    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal”, “Invertebrate”, “Plant”, “Seed”, “Fruit”, and “Leaf”) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels, but also substantial discrepancies between dietary guilds. MammalDIET provides a comprehensive, unique and freely available dataset on diet preferences for all terrestrial mammals worldwide. It enables broad-scale analyses for specific trophic levels and dietary guilds, and a first assessment of trait conservatism in mammalian diet preferences at a global scale. The digitalization, extrapolation and validation procedures could be transferable to other trait data and taxa

    Mammal predator and prey species richness are strongly linked at macroscales

    Get PDF
    Predator-prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey bottom-up or predator top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence have been accounted for, (2) predator-prey richness associations vary among biogeographic regions, and (3) body size influences large-scale covariation between predators and prey. SEMs including only productivity, climate, and human factors explained a high proportion of variance in prey richness (R2 = 0.56) but considerably less in predator richness (R2 = 0.13). Adding predator-to-prey or prey-topredator paths strongly increased the explained variance in both cases (prey R2 = 0.79, predator R2 = 0.57), suggesting that predator-prey interactions play an important role in driving global diversity gradients. Prey bottom-up effects prevailed over productivity, climate, and human influence to explain predator richness, whereas productivity and climate were more important than predator top-down effects for explaining prey richness, although predator top-down effects were still significant. Global predator-prey associations were not reproduced in all regions, indicating that distinct paleoclimate and evolutionary histories (Africa and Australia) may alter species interactions across trophic levels. Stronger crosstrophic- level associations were recorded within categories of similar body size (e.g., large prey to large predators) than between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large-bodied mammals. Overall, our results support the idea that trophic interactions can be important drivers of large-scale species richness gradients in combination with environmental effects. © 2013 by the Ecological Society of America

    A Particle-based Multiscale Solver for Compressible Liquid-Vapor Flow

    Full text link
    To describe complex flow systems accurately, it is in many cases important to account for the properties of fluid flows on a microscopic scale. In this work, we focus on the description of liquid-vapor flow with a sharp interface between the phases. The local phase dynamics at the interface can be interpreted as a Riemann problem for which we develop a multiscale solver in the spirit of the heterogeneous multiscale method, using a particle-based microscale model to augment the macroscopic two-phase flow system. The application of a microscale model makes it possible to use the intrinsic properties of the fluid at the microscale, instead of formulating (ad-hoc) constitutive relations
    corecore